
The Frank-Wolfe algorithm:
Projection-free and sparsity

Cyrille W. Combettes

Georgia Institute of Technology

MAI Division Seminar
Zuse Institute Berlin

.
April 28, 2021

Outline

1 Introduction

2 The Frank-Wolfe algorithm

3 Boosting Frank-Wolfe by chasing gradients

4 The approximate Carathéodory problem

2

Introduction
• A differentiable function f : Rn → R is L-smooth if L > 0 and for all

x , y ∈ Rn,

f (y) 6 f (x) + 〈y − x ,∇f (x)〉+ L
2‖y − x‖2

If f is convex, this is equivalent to f having an L-Lipschitz continuous
gradient:

‖∇f (y)−∇f (x)‖∗ 6 L‖y − x‖

• A differentiable function f : Rn → R is µ-gradient dominated if µ > 0 and
for all x ∈ Rn,

f (x)−min
Rn

f 6
‖∇f (x)‖2

∗
2µ

• A set C ⊂ Rn is α-strongly convex if α > 0 and for all x , y ∈ C, γ ∈ [0, 1],
and z ∈ Rn with ‖z‖ = 1,

(1− γ)x + γy + (1− γ)γα‖x − y‖2z ∈ C.

3

Introduction
• A differentiable function f : Rn → R is L-smooth if L > 0 and for all

x , y ∈ Rn,

f (y) 6 f (x) + 〈y − x ,∇f (x)〉+ L
2‖y − x‖2

If f is convex, this is equivalent to f having an L-Lipschitz continuous
gradient:

‖∇f (y)−∇f (x)‖∗ 6 L‖y − x‖

• A differentiable function f : Rn → R is µ-gradient dominated if µ > 0 and
for all x ∈ Rn,

f (x)−min
Rn

f 6
‖∇f (x)‖2

∗
2µ

• A set C ⊂ Rn is α-strongly convex if α > 0 and for all x , y ∈ C, γ ∈ [0, 1],
and z ∈ Rn with ‖z‖ = 1,

(1− γ)x + γy + (1− γ)γα‖x − y‖2z ∈ C.

3

Introduction
• A differentiable function f : Rn → R is L-smooth if L > 0 and for all

x , y ∈ Rn,

f (y) 6 f (x) + 〈y − x ,∇f (x)〉+ L
2‖y − x‖2

If f is convex, this is equivalent to f having an L-Lipschitz continuous
gradient:

‖∇f (y)−∇f (x)‖∗ 6 L‖y − x‖

• A differentiable function f : Rn → R is µ-gradient dominated if µ > 0 and
for all x ∈ Rn,

f (x)−min
Rn

f 6
‖∇f (x)‖2

∗
2µ

• A set C ⊂ Rn is α-strongly convex if α > 0 and for all x , y ∈ C, γ ∈ [0, 1],
and z ∈ Rn with ‖z‖ = 1,

(1− γ)x + γy + (1− γ)γα‖x − y‖2z ∈ C.

3

Introduction
• A differentiable function f : Rn → R is L-smooth if L > 0 and for all

x , y ∈ Rn,

f (y) 6 f (x) + 〈y − x ,∇f (x)〉+ L
2‖y − x‖2

If f is convex, this is equivalent to f having an L-Lipschitz continuous
gradient:

‖∇f (y)−∇f (x)‖∗ 6 L‖y − x‖

• A differentiable function f : Rn → R is µ-gradient dominated if µ > 0 and
for all x ∈ Rn,

f (x)−min
Rn

f 6
‖∇f (x)‖2

∗
2µ

• A set C ⊂ Rn is α-strongly convex if α > 0 and for all x , y ∈ C, γ ∈ [0, 1],
and z ∈ Rn with ‖z‖ = 1,

(1− γ)x + γy + (1− γ)γα‖x − y‖2z ∈ C.
3

Introduction

We consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

4

Introduction

We consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

4

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap
• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

5

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

xt

xt − γt∇f (xt)

xt+1

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap
• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

5

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive

• This is an issue with the method of projections, not necessarily with the
geometry of C: linear minimizations over C can still be relatively cheap

• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

5

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

5

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap
• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

5

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

6

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

6

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

Example: the `1-ball

6

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

6

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

6

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

• Can we avoid projections?

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C

• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections

• FW = pick a vertex (using gradient information) and move in that
direction

• Applications: traffic assignment, computer vision, optimal transport,
adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction

• Applications: traffic assignment, computer vision, optimal transport,
adversarial learning, etc.

7

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

7

The Fully-Corrective Frank-Wolfe algorithm

Reoptimize f over the convex hull conv{x0, v0, . . . , vt} of selected vertices
(Holloway, 1974):

Algorithm Fully-Corrective Frank-Wolfe (FCFW)
Input: Vertex x0 ∈ C

1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈C
〈v ,∇f (xt)〉

4: St+1 ← St ∪ {vt}
5: xt+1 ← arg min

x∈convSt+1

f (x)

• The iterates have much higher sparsity than those of FW
• Each iteration is much more expensive to compute

8

The Fully-Corrective Frank-Wolfe algorithm

Reoptimize f over the convex hull conv{x0, v0, . . . , vt} of selected vertices
(Holloway, 1974):

Algorithm Fully-Corrective Frank-Wolfe (FCFW)
Input: Vertex x0 ∈ C

1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈C
〈v ,∇f (xt)〉

4: St+1 ← St ∪ {vt}
5: xt+1 ← arg min

x∈convSt+1

f (x)

• The iterates have much higher sparsity than those of FW
• Each iteration is much more expensive to compute

8

The Fully-Corrective Frank-Wolfe algorithm

Reoptimize f over the convex hull conv{x0, v0, . . . , vt} of selected vertices
(Holloway, 1974):

Algorithm Fully-Corrective Frank-Wolfe (FCFW)
Input: Vertex x0 ∈ C

1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈C
〈v ,∇f (xt)〉

4: St+1 ← St ∪ {vt}
5: xt+1 ← arg min

x∈convSt+1

f (x)

• The iterates have much higher sparsity than those of FW
• Each iteration is much more expensive to compute

8

The Fully-Corrective Frank-Wolfe algorithm

Reoptimize f over the convex hull conv{x0, v0, . . . , vt} of selected vertices
(Holloway, 1974):

Algorithm Fully-Corrective Frank-Wolfe (FCFW)
Input: Vertex x0 ∈ C

1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈C
〈v ,∇f (xt)〉

4: St+1 ← St ∪ {vt}
5: xt+1 ← arg min

x∈convSt+1

f (x)

• The iterates have much higher sparsity than those of FW
• Each iteration is much more expensive to compute

8

The Fully-Corrective Frank-Wolfe algorithm

Reoptimize f over the convex hull conv{x0, v0, . . . , vt} of selected vertices
(Holloway, 1974):

Algorithm Fully-Corrective Frank-Wolfe (FCFW)
Input: Vertex x0 ∈ C

1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈C
〈v ,∇f (xt)〉

4: St+1 ← St ∪ {vt}
5: xt+1 ← arg min

x∈convSt+1

f (x)

• The iterates have much higher sparsity than those of FW

• Each iteration is much more expensive to compute

8

The Fully-Corrective Frank-Wolfe algorithm

Reoptimize f over the convex hull conv{x0, v0, . . . , vt} of selected vertices
(Holloway, 1974):

Algorithm Fully-Corrective Frank-Wolfe (FCFW)
Input: Vertex x0 ∈ C

1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈C
〈v ,∇f (xt)〉

4: St+1 ← St ∪ {vt}
5: xt+1 ← arg min

x∈convSt+1

f (x)

• The iterates have much higher sparsity than those of FW
• Each iteration is much more expensive to compute

8

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

9

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

9

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

9

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

9

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an L-smooth
convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved in general (Canon & Cullum, 1968;
Jaggi, 2013; Lan, 2013)

But, by denoting x∗ ∈ arg minRn f :
• If there exists x∗ ∈ int C and if f is gradient dominated, then O(exp(−ωt))

(Guélat & Marcotte, 1986)
• If every x∗ /∈ C and if C is strongly convex, then O(exp(−ωt)) (Levitin & Polyak,

1966)
• If C is strongly convex and if f is gradient dominated, then O(1/t2) (Garber &

Hazan, 2015)

10

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an L-smooth
convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved in general (Canon & Cullum, 1968;
Jaggi, 2013; Lan, 2013)

But, by denoting x∗ ∈ arg minRn f :
• If there exists x∗ ∈ int C and if f is gradient dominated, then O(exp(−ωt))

(Guélat & Marcotte, 1986)
• If every x∗ /∈ C and if C is strongly convex, then O(exp(−ωt)) (Levitin & Polyak,

1966)
• If C is strongly convex and if f is gradient dominated, then O(1/t2) (Garber &

Hazan, 2015)

10

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an L-smooth
convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved in general (Canon & Cullum, 1968;
Jaggi, 2013; Lan, 2013)

But, by denoting x∗ ∈ arg minRn f :

• If there exists x∗ ∈ int C and if f is gradient dominated, then O(exp(−ωt))
(Guélat & Marcotte, 1986)

• If every x∗ /∈ C and if C is strongly convex, then O(exp(−ωt)) (Levitin & Polyak,
1966)

• If C is strongly convex and if f is gradient dominated, then O(1/t2) (Garber &
Hazan, 2015)

10

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an L-smooth
convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved in general (Canon & Cullum, 1968;
Jaggi, 2013; Lan, 2013)

But, by denoting x∗ ∈ arg minRn f :
• If there exists x∗ ∈ int C and if f is gradient dominated, then O(exp(−ωt))

(Guélat & Marcotte, 1986)

• If every x∗ /∈ C and if C is strongly convex, then O(exp(−ωt)) (Levitin & Polyak,
1966)

• If C is strongly convex and if f is gradient dominated, then O(1/t2) (Garber &
Hazan, 2015)

10

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an L-smooth
convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved in general (Canon & Cullum, 1968;
Jaggi, 2013; Lan, 2013)

But, by denoting x∗ ∈ arg minRn f :
• If there exists x∗ ∈ int C and if f is gradient dominated, then O(exp(−ωt))

(Guélat & Marcotte, 1986)
• If every x∗ /∈ C and if C is strongly convex, then O(exp(−ωt)) (Levitin & Polyak,

1966)

• If C is strongly convex and if f is gradient dominated, then O(1/t2) (Garber &
Hazan, 2015)

10

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an L-smooth
convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved in general (Canon & Cullum, 1968;
Jaggi, 2013; Lan, 2013)

But, by denoting x∗ ∈ arg minRn f :
• If there exists x∗ ∈ int C and if f is gradient dominated, then O(exp(−ωt))

(Guélat & Marcotte, 1986)
• If every x∗ /∈ C and if C is strongly convex, then O(exp(−ωt)) (Levitin & Polyak,

1966)
• If C is strongly convex and if f is gradient dominated, then O(1/t2) (Garber &

Hazan, 2015)

10

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)

• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

11

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

11

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

12

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

12

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

12

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

12

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?

• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

13

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

13

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)

• Build this direction by using C to maintain the projection-free property

13

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

13

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉
λ0u0 = 〈v0−xt ,−∇f (xt)〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉
λ0u0 = 〈v0−xt ,−∇f (xt)〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt

and satisfies [xt , xt + gt] ⊂ C so we can update
xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

14

A generic boosting procedure
Algorithm Boosting procedure Boost(d, z,K , δ)
Input: d 6= 0, z ∈ C, K ∈ N\{0}, δ ∈]0, 1[

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← d− dk . k-th residual
4: vk ← arg maxv∈C 〈v , rk〉 . FW oracle
5: uk ← vk − z
6: λk ← 〈uk , rk〉/‖uk‖2

2
7: d ′k ← dk + λkuk
8: if cos(d ′k , d)− cos(dk , d) > δ then
9: dk+1 ← d ′k

10: Λ← Λ + λk
11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• cos(d̂ , d) = 〈d̂,d〉
‖d̂‖2‖d‖2

if d̂ 6= 0, else −1 if d̂ = 0

• The stopping criterion is an alignment improvement condition (typically
δ ← 10−3 and K ← +∞)

15

A generic boosting procedure
Algorithm Boosting procedure Boost(d, z,K , δ)
Input: d 6= 0, z ∈ C, K ∈ N\{0}, δ ∈]0, 1[

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← d− dk . k-th residual
4: vk ← arg maxv∈C 〈v , rk〉 . FW oracle
5: uk ← vk − z
6: λk ← 〈uk , rk〉/‖uk‖2

2
7: d ′k ← dk + λkuk
8: if cos(d ′k , d)− cos(dk , d) > δ then
9: dk+1 ← d ′k

10: Λ← Λ + λk
11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• cos(d̂ , d) = 〈d̂,d〉
‖d̂‖2‖d‖2

if d̂ 6= 0, else −1 if d̂ = 0
• The stopping criterion is an alignment improvement condition (typically
δ ← 10−3 and K ← +∞)

15

A generic boosting procedure
Algorithm Boosting procedure Boost(d, z,K , δ)
Input: d 6= 0, z ∈ C, K ∈ N\{0}, δ ∈]0, 1[

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← d− dk . k-th residual
4: vk ← arg maxv∈C 〈v , rk〉 . FW oracle
5: uk ← vk − z
6: λk ← 〈uk , rk〉/‖uk‖2

2
7: d ′k ← dk + λkuk
8: if cos(d ′k , d)− cos(dk , d) > δ then
9: dk+1 ← d ′k

10: Λ← Λ + λk
11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• cos(d̂ , d) = 〈d̂,d〉
‖d̂‖2‖d‖2

if d̂ 6= 0, else −1 if d̂ = 0
• The stopping criterion is an alignment improvement condition (typically
δ ← 10−3 and K ← +∞)

15

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

16

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

16

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

16

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

16

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?

• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

16

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?

• How does it compare to the state of the art?

16

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

16

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

17

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

17

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

17

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

17

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

17

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free strategies and
label them with an “L”

18

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free strategies and
label them with an “L”

18

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free strategies and
label them with an “L”

18

Computational experiments

• Sparse signal recovery • Traffic assignment

• Sparse logistic regression on the
Gisette dataset

• Collaborative filtering on the
MovieLens 100k dataset

19

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG

BoostDICG

at ← away vertex

at ← away vertex

vt ← arg min
v∈C

〈v ,∇f (xt)〉

gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at)

xt+1 ← xt + γtgt

20

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG

BoostDICG

at ← away vertex

at ← away vertex

vt ← arg min
v∈C

〈v ,∇f (xt)〉

gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at)

xt+1 ← xt + γtgt

20

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG

BoostDICG

at ← away vertex

at ← away vertex

vt ← arg min
v∈C

〈v ,∇f (xt)〉

gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at)

xt+1 ← xt + γtgt

20

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈v ,∇f (xt)〉 gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at) xt+1 ← xt + γtgt
20

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈v ,∇f (xt)〉 gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at) xt+1 ← xt + γtgt
20

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈v ,∇f (xt)〉 gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at) xt+1 ← xt + γtgt
20

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

21

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

21

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n

• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)

• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)

• Deterministic proof by Mirrokni et al. (2017) using mirror descent
(Nemirovsky & Yudin, 1983) on the dual problem

• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem

• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

22

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

23

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

23

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

23

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

23

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

24

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2

and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

24

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

24

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

24

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

24

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

24

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

24

The Hybrid Conditional Gradient-Smoothing algorithm

Theorem (Argyriou et al., 2014)
Let f : Rn → R be a convex G2-Lipschitz continuous function w.r.t. the
`2-norm. Then

f (xt)−min
C

f 6
4G2D2√

t + 1
.

25

Cardinality bounds

p Assumption Cardinality bound

Via Frank-Wolfe Related work

[2,+∞[– O
(

pD2
p

ε2

)
O
(

pD2
p

ε2

)
x∗ ∈ int C O

(
p
(

Dp

rp

)2

ln
(1
ε

))
O

(
p
(

Dp

rp

)2

ln
(1
ε

))
C strongly convex O

(√pDp + p/αp

ε

)
–

]1, 2[– O
(

n(2−p)/pD2
2

ε2

)
O
(

Dp/(p−1)
p

p1/(p−1)εp/(p−1)

)
1 – O

(
nD2

2
ε2

)
–

+∞ – O
(

D2
2
ε2

)
O
(

ln(n)D2
∞

ε2

)

26

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn
• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)
gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

27

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn

• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)
gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

27

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn
• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)

gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

27

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn
• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)
gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

27

A lower bound when p ∈ [2, +∞[

• FCFW almost matches the lower bound

• There is no precise analysis of FCFW: the current analysis is transferred
from that of AFW (Lacoste-Julien & Jaggi, 2015) and holds only for
smooth strongly convex functions

28

A lower bound when p ∈ [2, +∞[

• FCFW almost matches the lower bound
• There is no precise analysis of FCFW: the current analysis is transferred

from that of AFW (Lacoste-Julien & Jaggi, 2015) and holds only for
smooth strongly convex functions

28

Conclusion

Boosted Frank-Wolfe

gt
v0

xt

−∇f (xt)

Approximate Carathéodory

x∗

29

References (1/3)
A. Argyriou, M. Signoretto, and J. A. K. Suykens. Hybrid conditional gradient-smoothing

algorithms with applications to sparse and low rank regularization. Chapman & Hall/CRC,
2014

S. Barman. Approximating Nash equilibria and dense bipartite subgraphs via an approximate
version of Carathéodory’s theorem. STOC, 2015

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning
of conditional gradients. ICML, 2019

M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe
algorithm. SIAM J. Control, 1968

C. W. Combettes and S. Pokutta. Revisiting the approximate Carathéodory problem via the
Frank-Wolfe algorithm. arXiv, 2021

C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020
C. W. Combettes and S. Pokutta. Complexity of linear minimization and projection on some

sets. arXiv, 2021
L. Condat. Fast projection onto the simplex and the `1 ball. Math. Program., 2016
V. F. Demyanov and A. M. Rubinov. Approximate Methods in Optimization Problems. Elsevier,

1970
J. C. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop step size rules.

J. Math. Anal. Appl., 1978

30

References (2/3)

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956
D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent con-

ditional gradient algorithm for structured polytopes. NIPS, 2016
D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets.

ICML, 2015
J. Guélat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Math. Program., 1986
M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013
S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization

variants. NIPS, 2015
G. Lan. The complexity of large-scale convex programming under a linear optimization oracle.

arXiv, 2013
E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math.

Phys., 1966
V. Mirrokni, R. Paes Leme, A. Vladu, and S. C.-W. Wong. Tight bounds for approximate

Carathéodory and beyond. ICML, 2017
J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France, 1965
A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization.

Wiley, 1983

31

References (3/3)

G. Pisier. Remarques sur un résultat non publié de B. Maurey. Ec. polytech., 1981
P. Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Programming.

North-Holland, 1970

32

	Introduction
	The Frank-Wolfe algorithm
	Boosting Frank-Wolfe by chasing gradients
	The approximate Carathéodory problem

