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Introduction

Theorem (Carathéodory [1907])

Every point in the convex hull of a set V ⊂ Rn is the convex combination of at
most n + 1 points in V.

In R2, every point in conv(V) is the convex
combination of at most 3 points in V

Can we reduce n + 1 when we can afford
an ε-approximation?

Define the sparsity of x as the minimum
number of vertices necessary to form x as
a convex combination

v1

v6

v3

v2

v5

v4

x∗x
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The approximate Carathéodory problem

Problem

Find x ∈ conv(V) with high sparsity satisfying ‖x − x∗‖p 6 ε.

Applications in game theory, combinatorial optimization, and machine
learning

Theorem

Let p > 2. Then there exists x ∈ conv(V) with sparsity O(pD2
p/ε

2) satisfying
‖x − x∗‖p 6 ε, where Dp = supv ,w∈V ‖w − v‖p.

This result is independent of the space dimension n

The bound is tight [Mirrokni et al., 2017]

Probabilistic proofs by Pisier [1981] and Barman [2015]

Deterministic proof by Mirrokni et al. [2017] using mirror descent
[Nemirovsky and Yudin, 1983] on the dual problem

Can we solve min
x∈conv(V)

‖x − x∗‖p by sequentially picking up vertices?
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The Frank-Wolfe algorithm
Frank & Wolfe [1956], Levitin & Polyak [1966]

Algorithm Frank-Wolfe (FW)

1: x0 ∈ V
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈V
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

5: end for

FW minimizes f over conv(V) by
sequentially picking up vertices

The final iterate xT has sparsity at
most T + 1

This is like a greedy method for the
approximate Carathéodory problem!

f (x) = ‖x − x∗‖2
2

xt

vt

−∇f (xt)

x∗

xt+1
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f (x) = ‖x − x∗‖2
2

xt

vt

−∇f (xt)

x∗

xt+1

5/13



The Frank-Wolfe algorithm
Frank & Wolfe [1956], Levitin & Polyak [1966]

Algorithm Frank-Wolfe (FW)

1: x0 ∈ V
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈V
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

5: end for

FW minimizes f over conv(V) by
sequentially picking up vertices

The final iterate xT has sparsity at
most T + 1

This is like a greedy method for the
approximate Carathéodory problem!
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The approximate Carathéodory problem via FW

Apply FW to f (x) = ‖x − x∗‖2
p and count the number of iterations T to

achieve ε2-convergence: ‖xT − x∗‖2
p 6 ε2

Then xT has sparsity at most T + 1 and satisfies ‖xT − x∗‖p 6 ε

Classical convergence results of FW and variants require smoothness
and/or strong convexity of f w.r.t. a norm ‖ · ‖

S

2
‖y − x‖2 6 f (y)− f (x)− 〈∇f (x), y − x〉 6 L

2
‖y − x‖2

For p > 2, f (x) = ‖x − x∗‖2
p is smooth w.r.t. ‖ · ‖p but it is strongly

convex only when p = 2

Replace strong convexity with a weaker condition: the PL inequality
w.r.t. ‖ · ‖ [Polyak, 1963,  Lojasiewicz, 1963]

f (x)−min
Rn

f 6
1

2µ
‖∇f (x)‖2

∗

For p > 2, f (x) = ‖x − x∗‖2
p is 2(p − 1)-smooth and 2-PL w.r.t. ‖ · ‖p
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Apply FW to f (x) = ‖x − x∗‖2
p and count the number of iterations T to

achieve ε2-convergence: ‖xT − x∗‖2
p 6 ε2

Then xT has sparsity at most T + 1 and satisfies ‖xT − x∗‖p 6 ε

Classical convergence results of FW and variants require smoothness
and/or strong convexity of f w.r.t. a norm ‖ · ‖

S

2
‖y − x‖2 6 f (y)− f (x)− 〈∇f (x), y − x〉 6 L

2
‖y − x‖2

For p > 2, f (x) = ‖x − x∗‖2
p is smooth w.r.t. ‖ · ‖p but it is strongly

convex only when p = 2

Replace strong convexity with a weaker condition: the PL inequality
w.r.t. ‖ · ‖ [Polyak, 1963,  Lojasiewicz, 1963]

f (x)−min
Rn

f 6
1

2µ
‖∇f (x)‖2

∗

For p > 2, f (x) = ‖x − x∗‖2
p is 2(p − 1)-smooth and 2-PL w.r.t. ‖ · ‖p

6/13



The approximate Carathéodory problem via FW
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achieve ε2-convergence: ‖xT − x∗‖2
p 6 ε2

Then xT has sparsity at most T + 1 and satisfies ‖xT − x∗‖p 6 ε

Classical convergence results of FW and variants require smoothness
and/or strong convexity of f w.r.t. a norm ‖ · ‖

S

2
‖y − x‖2 6 f (y)− f (x)− 〈∇f (x), y − x〉 6 L

2
‖y − x‖2

For p > 2, f (x) = ‖x − x∗‖2
p is smooth w.r.t. ‖ · ‖p but it is strongly

convex only when p = 2

Replace strong convexity with a weaker condition: the PL inequality
w.r.t. ‖ · ‖ [Polyak, 1963,  Lojasiewicz, 1963]
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Sparsity bounds via FW convergence rates
Levitin & Polyak [1966], Guélat & Marcotte [1986], Jaggi [2013], Garber & Hazan [2015]

p > 2

C ⊂ Rn be a compact convex set

V ⊆ ∂C be the compact set of interest (e.g., C = conv(V))

We want a sparse approximate convex decomposition of x∗ ∈ conv(V)

Assumptions FW rate Sparsity bound

–
4(p − 1)D2

p

t + 2

4(p − 1)D2
p

ε2
= O

(
pD2

p

ε2

)
C is Sp-strongly

max{9(p − 1)D2
p , 1152(p − 1)2/S2

p}
(t + 2)2

O
(√

pDp + p/Sp

ε

)
convex

x∗ ∈ relintp(C)

(
1− 1

p − 1

r 2
p

D2
p

)t

ε0 O
(
pD2

p

r 2
p

ln

(
1

ε

))
with radius rp

FW adapts to the geometry of the problem to yield higher sparsity
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Fully-Corrective Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)

1: x0 ∈ V
2: for t = 0 to T − 1 do
3: vt ← argmin

v∈V
〈∇f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

5: end for

Selected vertices in FW may be redundant, can we fix this?

Algorithm Fully-Corrective Frank-Wolfe (FCFW)

1: x0 ∈ V
2: S0 ← {x0}
3: for t = 0 to T − 1 do
4: vt ← argmin

v∈V
〈∇f (xt), v〉

5: St+1 ← St ∪ {vt}
6: xt+1 ← argmin

conv(St+1)

f

7: end for
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Fully-Corrective Frank-Wolfe algorithm

We randomly generated 1000 vertices and x∗ ∈ conv(V)

Here arbitrarily chose p = 4
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Fully-Corrective Frank-Wolfe algorithm

Here x∗ is generated by a convex combination of only 50 vertices

FCFW obtains an exact convex decomposition of x∗ once it picks up all its
vertices
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Fully-Corrective Frank-Wolfe algorithm

FCFW matches the theoretical lower bound!

Can we derive a precise convergence rate for FCFW?
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Thank you!

https://arxiv.org/pdf/1911.04415.pdf
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