Revisiting the Approximate Carathéodory Problem via the Frank-Wolfe Algorithm

Cyrille W. Combettes

Joint work with Sebastian Pokutta

Georgia H. Milton Stewart School of Industrial and Tech Systems Engineering

Conference on Data Science and Optimization Fields Institute, Toronto, Canada

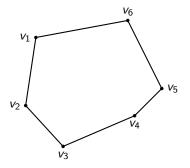
November 20th, 2019

Introduction

- 2 The Frank-Wolfe algorithm
- Sparsity bounds via Frank-Wolfe
- 4 The Fully-Corrective Frank-Wolfe algorithm

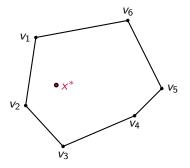
Every point in the convex hull of a set $\mathcal{V} \subset \mathbb{R}^n$ is the convex combination of at most n + 1 points in \mathcal{V} .

In ℝ², every point in conv(V) is the convex combination of at most 3 points in V



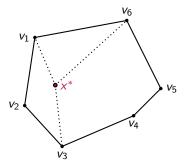
Every point in the convex hull of a set $\mathcal{V} \subset \mathbb{R}^n$ is the convex combination of at most n + 1 points in \mathcal{V} .

In ℝ², every point in conv(V) is the convex combination of at most 3 points in V

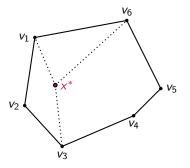


Every point in the convex hull of a set $\mathcal{V} \subset \mathbb{R}^n$ is the convex combination of at most n + 1 points in \mathcal{V} .

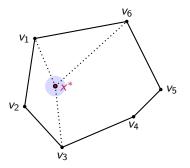
In ℝ², every point in conv(V) is the convex combination of at most 3 points in V



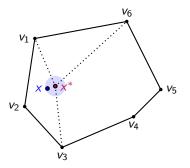
- In ℝ², every point in conv(V) is the convex combination of at most 3 points in V
- Can we reduce n + 1 when we can afford an ε-approximation?



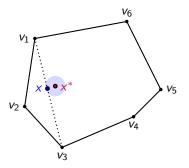
- In ℝ², every point in conv(V) is the convex combination of at most 3 points in V
- Can we reduce n + 1 when we can afford an ε-approximation?



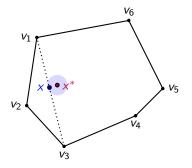
- In ℝ², every point in conv(V) is the convex combination of at most 3 points in V
- Can we reduce n + 1 when we can afford an ε-approximation?



- In ℝ², every point in conv(V) is the convex combination of at most 3 points in V
- Can we reduce n + 1 when we can afford an ε-approximation?



- In ℝ², every point in conv(V) is the convex combination of at most 3 points in V
- Can we reduce *n* + 1 when we can afford an *ϵ*-approximation?
- Define the *sparsity* of x as the minimum number of vertices necessary to form x as a convex combination



Problem

Find $x \in \text{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

Problem

Find $x \in \operatorname{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

• Applications in game theory, combinatorial optimization, and machine learning

Problem

Find $x \in \operatorname{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

• Applications in game theory, combinatorial optimization, and machine learning

Theorem

Problem

Find $x \in \operatorname{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

• Applications in game theory, combinatorial optimization, and machine learning

Theorem

Let $p \ge 2$. Then there exists $x \in \operatorname{conv}(\mathcal{V})$ with sparsity $\mathcal{O}(pD_p^2/\epsilon^2)$ satisfying $||x - x^*||_p \le \epsilon$, where $D_p = \sup_{v,w \in \mathcal{V}} ||w - v||_p$.

• This result is independent of the space dimension *n*

Problem

Find $x \in \operatorname{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

• Applications in game theory, combinatorial optimization, and machine learning

Theorem

- This result is independent of the space dimension *n*
- The bound is tight [Mirrokni et al., 2017]

Problem

Find $x \in \operatorname{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

• Applications in game theory, combinatorial optimization, and machine learning

Theorem

- This result is independent of the space dimension *n*
- The bound is tight [Mirrokni et al., 2017]
- Probabilistic proofs by Pisier [1981] and Barman [2015]

Problem

Find $x \in \operatorname{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

• Applications in game theory, combinatorial optimization, and machine learning

Theorem

- This result is independent of the space dimension *n*
- The bound is tight [Mirrokni et al., 2017]
- Probabilistic proofs by Pisier [1981] and Barman [2015]
- Deterministic proof by Mirrokni et al. [2017] using mirror descent [Nemirovsky and Yudin, 1983] on the dual problem

Problem

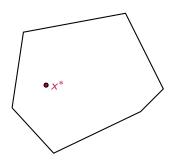
Find $x \in \operatorname{conv}(\mathcal{V})$ with high sparsity satisfying $||x - x^*||_p \leq \epsilon$.

• Applications in game theory, combinatorial optimization, and machine learning

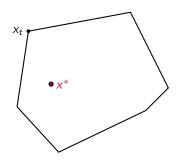
Theorem

- This result is independent of the space dimension *n*
- The bound is tight [Mirrokni et al., 2017]
- Probabilistic proofs by Pisier [1981] and Barman [2015]
- Deterministic proof by Mirrokni et al. [2017] using mirror descent [Nemirovsky and Yudin, 1983] on the dual problem
- Can we solve $\min_{x \in \text{conv}(\mathcal{V})} \|x x^*\|_p$ by sequentially picking up vertices?

$$f(x) = \|x - x^*\|_2^2$$

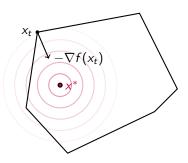


$$f(x) = \|x - x^*\|_2^2$$



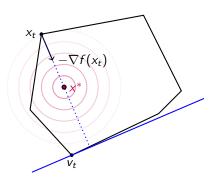
AlgorithmFrank-Wolfe (FW)1: $x_0 \in \mathcal{V}$ 2: for t = 0 to T - 1 do3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$ 5: end for

 $f(x) = \|x - x^*\|_2^2$

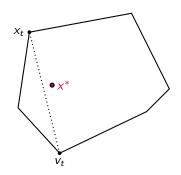


AlgorithmFrank-Wolfe (FW)1: $x_0 \in \mathcal{V}$ 2: for t = 0 to T - 1 do3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$ 5: end for

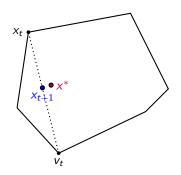
 $f(x) = \|x - x^*\|_2^2$



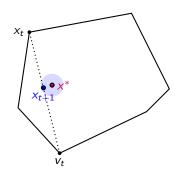
$$f(x) = \|x - x^*\|_2^2$$



$$f(x) = \|x - x^*\|_2^2$$



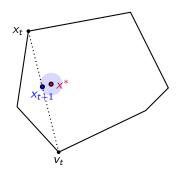
$$f(x) = \|x - x^*\|_2^2$$



AlgorithmFrank-Wolfe (FW)1: $x_0 \in \mathcal{V}$ 2: for t = 0 to T - 1 do3: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$ 5: end for

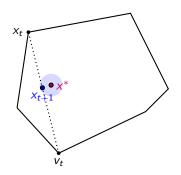
 FW minimizes f over conv(V) by sequentially picking up vertices

$$f(x) = \|x - x^*\|_2^2$$



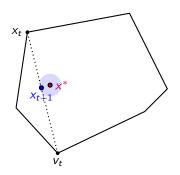
- FW minimizes f over conv(V) by sequentially picking up vertices
- The final iterate x_T has sparsity at most T + 1

$$f(x) = \|x - x^*\|_2^2$$



- FW minimizes f over conv(V) by sequentially picking up vertices
- The final iterate x_T has sparsity at most T + 1
- This is like a greedy method for the approximate Carathéodory problem!

$$f(x) = \|x - x^*\|_2^2$$



Apply FW to f(x) = ||x - x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T - x^{*}||²_p ≤ ε²

- Apply FW to f(x) = ||x x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T x^{*}||²_p ≤ ε²
- Then x_T has sparsity at most T+1 and satisfies $\|x_T x^*\|_p \leqslant \epsilon$

- Apply FW to f(x) = ||x x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T x^{*}||²_p ≤ ε²
- Then x_T has sparsity at most T+1 and satisfies $\|x_T x^*\|_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

- Apply FW to f(x) = ||x x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T x^{*}||²_p ≤ ε²
- Then x_T has sparsity at most T+1 and satisfies $\|x_T x^*\|_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of *f* w.r.t. a norm $\|\cdot\|$

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leqslant \frac{L}{2} \|y - x\|^2$$

- Apply FW to f(x) = ||x x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T x^{*}||²_p ≤ ε²
- Then x_T has sparsity at most T+1 and satisfies $\|x_T x^*\|_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$\frac{5}{2}\|y-x\|^2 \leqslant f(y) - f(x) - \langle \nabla f(x), y-x \rangle \leqslant \frac{L}{2}\|y-x\|^2$$

- Apply FW to f(x) = ||x x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T x^{*}||²_p ≤ ε²
- Then $x_{\mathcal{T}}$ has sparsity at most $\mathcal{T}+1$ and satisfies $\|x_{\mathcal{T}}-x^*\|_p\leqslant\epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$\frac{S}{2}\|y-x\|^2 \leqslant f(y) - f(x) - \langle \nabla f(x), y-x \rangle \leqslant \frac{L}{2}\|y-x\|^2$$

• For $p \ge 2$, $f(x) = ||x - x^*||_p^2$ is smooth w.r.t. $|| \cdot ||_p$ but it is strongly convex only when p = 2

- Apply FW to f(x) = ||x x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T x^{*}||²_p ≤ ε²
- Then x_T has sparsity at most T+1 and satisfies $\|x_T x^*\|_p \leqslant \epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm || · ||

$$\frac{S}{2}\|y-x\|^2 \leqslant f(y) - f(x) - \langle \nabla f(x), y-x \rangle \leqslant \frac{L}{2}\|y-x\|^2$$

- For $p \ge 2$, $f(x) = ||x x^*||_p^2$ is smooth w.r.t. $|| \cdot ||_p$ but it is strongly convex only when p = 2
- Replace strong convexity with a weaker condition: the PL inequality w.r.t. || · || [Polyak, 1963, Łojasiewicz, 1963]

$$f(x) - \min_{\mathbb{R}^n} f \leqslant \frac{1}{2\mu} \|\nabla f(x)\|_*^2$$

The approximate Carathéodory problem via FW

- Apply FW to f(x) = ||x x^{*}||²_p and count the number of iterations T to achieve ε²-convergence: ||x_T x^{*}||²_p ≤ ε²
- Then $x_{\mathcal{T}}$ has sparsity at most $\mathcal{T}+1$ and satisfies $\|x_{\mathcal{T}}-x^*\|_p\leqslant\epsilon$
- Classical convergence results of FW and variants require smoothness and/or strong convexity of f w.r.t. a norm $\|\cdot\|$

$$\frac{S}{2}\|y-x\|^2 \leqslant f(y) - f(x) - \langle \nabla f(x), y-x \rangle \leqslant \frac{L}{2}\|y-x\|^2$$

- For $p \ge 2$, $f(x) = ||x x^*||_p^2$ is smooth w.r.t. $|| \cdot ||_p$ but it is strongly convex only when p = 2
- Replace strong convexity with a weaker condition: the PL inequality w.r.t. || · || [Polyak, 1963, Łojasiewicz, 1963]

$$f(x) - \min_{\mathbb{R}^n} f \leqslant \frac{1}{2\mu} \| \nabla f(x) \|_*^2$$

• For $p \ge 2$, $f(x) = \|x - x^*\|_p^2$ is 2(p-1)-smooth and 2-PL w.r.t. $\|\cdot\|_p$

Sparsity bounds via FW convergence rates Levitin & Polyak [1966], Guélat & Marcotte [1986], Jaggi [2013], Garber & Hazan [2015]

- *p* ≥ 2
- $\mathcal{C} \subset \mathbb{R}^n$ be a compact convex set
- $\mathcal{V} \subseteq \partial \mathcal{C}$ be the compact set of interest (e.g., $\mathcal{C} = \text{conv}(\mathcal{V})$)
- We want a sparse approximate convex decomposition of $x^* \in \text{conv}(\mathcal{V})$

Sparsity bounds via FW convergence rates Levitin & Polyak [1966], Guélat & Marcotte [1986], Jaggi [2013], Garber & Hazan [2015]

- *p* ≥ 2
- $\mathcal{C} \subset \mathbb{R}^n$ be a compact convex set
- $\mathcal{V} \subseteq \partial \mathcal{C}$ be the compact set of interest (e.g., $\mathcal{C} = \text{conv}(\mathcal{V})$)
- We want a sparse approximate convex decomposition of $x^* \in \text{conv}(\mathcal{V})$

Assumptions	FW rate	Sparsity bound
-	$\frac{4(p-1)D_{\rho}^2}{t+2}$	$rac{4(p-1)D_p^2}{\epsilon^2}=\mathcal{O}\left(rac{pD_p^2}{\epsilon^2} ight)$
C is S_p -strongly convex	$\frac{\max\{9(p-1)D_p^2,1152(p-1)^2/S_p^2\}}{(t+2)^2}$	$\mathcal{O}\left(\frac{\sqrt{p}D_p + p/S_p}{\epsilon}\right)$
$x^* \in relint_{ ho}(\mathcal{C})$ with radius $r_{ ho}$	$\left(1-rac{1}{p-1}rac{r_{ ho}^2}{D_{ ho}^2} ight)^t\epsilon_0$	$\mathcal{O}\left(\frac{pD_p^2}{r_p^2}\ln\left(\frac{1}{\epsilon}\right)\right)$

Sparsity bounds via FW convergence rates Levitin & Polyak [1966], Guélat & Marcotte [1986], Jaggi [2013], Garber & Hazan [2015]

- *p* ≥ 2
- $\mathcal{C} \subset \mathbb{R}^n$ be a compact convex set
- $\mathcal{V} \subseteq \partial \mathcal{C}$ be the compact set of interest (e.g., $\mathcal{C} = \mathsf{conv}(\mathcal{V})$)
- We want a sparse approximate convex decomposition of $x^* \in \mathsf{conv}(\mathcal{V})$

Assumptions	FW rate	Sparsity bound
-	$\frac{4(p-1)D_{\rho}^2}{t+2}$	$rac{4(p-1)D_p^2}{\epsilon^2}=\mathcal{O}\left(rac{pD_p^2}{\epsilon^2} ight)$
C is S_p -strongly convex	$\frac{\max\{9(p-1)D_p^2,1152(p-1)^2/S_p^2\}}{(t+2)^2}$	$\mathcal{O}\left(\frac{\sqrt{p}D_p + p/S_p}{\epsilon}\right)$
$x^* \in relint_{ ho}(\mathcal{C})$ with radius $r_{ ho}$	$\left(1-rac{1}{p-1}rac{r_{ ho}^2}{D_{ ho}^2} ight)^t\epsilon_0$	$\mathcal{O}\left(\frac{pD_p^2}{r_p^2}\ln\left(\frac{1}{\epsilon}\right)\right)$

• FW adapts to the geometry of the problem to yield higher sparsity

Algorithm Frank-Wolfe (FW)

- 1: $x_0 \in \mathcal{V}$
- 2: for t = 0 to T 1 do
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow \overset{v \in \nu}{x_t} + \gamma_t (v_t x_t)$
- 5: end for

Algorithm Frank-Wolfe (FW)

- 1: $x_0 \in \mathcal{V}$
- 2: for t = 0 to T 1 do
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow \overset{v \in \nu}{x_t} + \gamma_t (v_t x_t)$
- 5: end for
 - Selected vertices in FW may be redundant, can we fix this?

Algorithm Frank-Wolfe (FW)

- 1: $x_0 \in \mathcal{V}$
- 2: for t = 0 to T 1 do
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t^{v \in v} + \gamma_t (v_t x_t)$

5: end for

• Selected vertices in FW may be redundant, can we fix this?

Algorithm Fully-Corrective Frank-Wolfe (FCFW)

1:
$$x_0 \in \mathcal{V}$$

2: $S_0 \leftarrow \{x_0\}$
3: for $t = 0$ to $T - 1$ do
4: $v_t \leftarrow \underset{v \in \mathcal{V}}{\arg\min} \langle \nabla f(x_t), v_t \rangle$
5: $S_{t+1} \leftarrow S_t \cup \{v_t\}$
6: $x_{t+1} \leftarrow \underset{conv(S_{t+1})}{\arg\min} f$
7: end for

Algorithm Frank-Wolfe (FW)

- 1: $x_0 \in \mathcal{V}$
- 2: for t = 0 to T 1 do
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t^{v \in v} + \gamma_t (v_t x_t)$

5: end for

• Selected vertices in FW may be redundant, can we fix this?

Algorithm Fully-Corrective Frank-Wolfe (FCFW)

1:
$$x_0 \in \mathcal{V}$$

2: $S_0 \leftarrow \{x_0\}$
3: for $t = 0$ to $T - 1$ do
4: $v_t \leftarrow \arg\min_{v \in \mathcal{V}} \langle \nabla f(x_t), v \rangle$
5: $S_{t+1} \leftarrow S_t \cup \{v_t\}$
6: $x_{t+1} \leftarrow \arg\min_{conv(S_{t+1})} f$
7: end for

Algorithm Frank-Wolfe (FW)

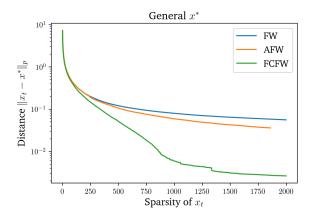
- 1: $x_0 \in \mathcal{V}$
- 2: for t = 0 to T 1 do
- 3: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
- 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t x_t)$
- 5: end for
 - Selected vertices in FW may be redundant, can we fix this?

Algorithm Fully-Corrective Frank-Wolfe (FCFW)

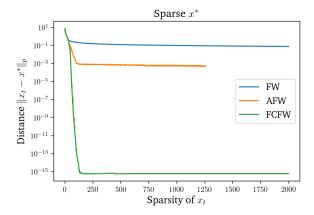
1:
$$x_0 \in \mathcal{V}$$

2: $S_0 \leftarrow \{x_0\}$
3: for $t = 0$ to $T - 1$ do
4: $v_t \leftarrow \underset{v \in \mathcal{V}}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$
5: $S_{t+1} \leftarrow S_t \cup \{v_t\}$
6: $x_{t+1} \leftarrow \underset{conv(S_{t+1})}{\operatorname{arg\,min}} f$
7: end for

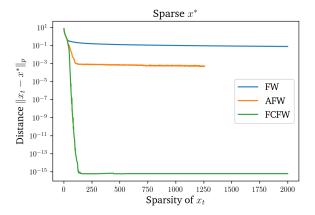
- We randomly generated 1000 vertices and $x^* \in \operatorname{conv}(\mathcal{V})$
- Here arbitrarily chose p = 4



• Here x^* is generated by a convex combination of only 50 vertices

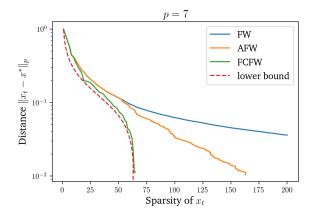


• Here x^* is generated by a convex combination of only 50 vertices

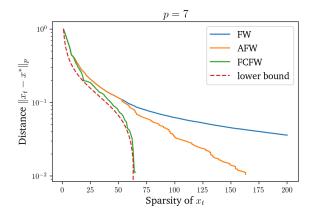


 FCFW obtains an *exact* convex decomposition of x* once it picks up all its vertices

• FCFW matches the theoretical lower bound!



• FCFW matches the theoretical lower bound!



• Can we derive a precise convergence rate for FCFW?

Thank you!

https://arxiv.org/pdf/1911.04415.pdf

References

- S. Barman. Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Carathéodory's theorem. *STOC*, 2015.
- C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. *Mathematische Annalen*, 1907.
- M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 1956.
- D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets. *ICML*, 2015.
- M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013.
- E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, 1966.
- S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. Colloques Internationaux du CNRS, 1963.
- V. Mirrokni, R. Paes Leme, A. Vladu, and S. C.-W. Wong. Tight bounds for approximate Carathéodory and beyond. *ICML*, 2017.
- A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley, 1983.
- G. Pisier. Remarques sur un résultat non publié de B. Maurey. *Séminaire d'Analyse Fonctionnelle*, École Polytechnique, 1981.
- B. T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathematics and Mathematical Physics, 1963.