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Introduction

We consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j )2

s.t. ‖X‖nuc 6 τ
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Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap
• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization
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Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈ ]1,∞[ \{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)
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Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

5



Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈ ]1,∞[ \{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
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• Can we avoid projections?
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The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.
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Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

7
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Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• The iterates can follow a naive and slow trajectory
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The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory
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Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

10
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Boosting Frank-Wolfe

• Can we speed up FW in a simple way?

• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property
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Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈v ,−∇f (xt )〉
λ0u0 = 〈v0−xt ,−∇f (xt )〉

‖v0−xt‖2 (v0 − xt )
r1 = −∇f (xt )− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt )
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt ] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]
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A generic boosting procedure
Algorithm Boosting procedure Boost(d, z,K , δ)
Input: d 6= 0, z ∈ C, K ∈ N\{0}, δ ∈ ]0, 1[

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← d− dk . k-th residual
4: vk ← arg maxv∈C 〈v , rk〉 . FW oracle
5: uk ← vk − z
6: λk ← 〈uk , rk〉/‖uk‖2

2
7: d ′k ← dk + λkuk
8: if cos(d ′k , d)− cos(dk , d) > δ then
9: dk+1 ← d ′k

10: Λ← Λ + λk
11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• cos(d̂ , d) = 〈d̂,d〉
‖d̂‖2‖d‖2

if d̂ 6= 0, else −1 if d̂ = 0

• The stopping criterion is an alignment improvement condition (typically
δ ← 10−3 and K ← +∞)
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The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈ ]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?
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Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt )〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)
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Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

( xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j )

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free strategies and
label them with an “L”
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Computational experiments

• Sparse signal recovery • Traffic assignment

• Sparse logistic regression on the
Gisette dataset

• Collaborative filtering on the
MovieLens 100k dataset

17



Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG

BoostDICG

at ← away vertex

at ← away vertex

vt ← arg min
v∈C

〈v ,∇f (xt )〉

gt ← Boost(−∇f (xt ), at ,K , δ)

xt+1 ← xt + γt (vt − at )

xt+1 ← xt + γtgt

18
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Large-scale optimization

Consider

min
{

f (x) := 1
m

m∑
i=1

fi (x)
}

s.t. x ∈ C
where
• C ⊂ Rn is a compact convex set
• f1, . . . , fm : Rn → R are smooth (non)convex functions
• m ≫ 1 is very large

Computing f (x) or ∇f (x) is too expensive
• Cannot use line search
• More efficient to use an estimator ∇̃f (x) to get approximate (but cheap)

gradient information

19
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Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈v , ∇̃f (xt)〉

4: xt+1 ← xt + γt(vt − xt)

• Use a stochastic estimator ∇̃f (xt)
• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the

gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

bt∑
j=1
∇fij (xt) where i1, . . . , ibt

i.i.d.∼ U(J1,mK)

• SFW converges with rate O(1/t) when bt ∼ t2 (Hazan & Luo, 2016)
• New variants require only bt ∼ t or bt ∼ 1

20
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The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8
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The Adaptive Gradient algorithm
We can rewrite

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt ]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem
• Larger step-sizes are given to infrequent (but potentially very informative)

features whenever they appear so that they do not go unnoticed
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The Adaptive Gradient algorithm

common feature

common feature
rare feature

descent direction

xt

Adaptive step-sizes reduce the magnitude of the common features and increase those
of the rare features:

common feature

common feature
rare feature

common feature

common feature
rare feature

common feature
common feature rare feature

descent direction
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Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?

• Let Gt = H−1
t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈v ,Gt〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad

24
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Frank-Wolfe with adaptive gradients via sliding

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈x , ∇̃f (xt)〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall (AdaGrad is usually
used for unconstrained optimization)

Idea:
• Solve the subproblem using FW (sliding technique of Lan & Zhou (2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• That is, we claim that leveraging just a small amount of information from

the adaptive metric Ht is enough
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The method
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt )
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t ]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt (y (t)

k )← ∇̃f (xt ) + 1
ηt

Ht (y (t)
k − xt )

7: v (t)
k ← arg min

v∈C
〈∇Qt (y (t)

k ), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt (y (t)

k ), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k )

10: xt+1 ← y (t)
K

• Lines 4–9 apply K iterations of FW to
minx∈C

{
Qt (x) := f (xt ) + 〈x − xt , ∇̃f (xt )〉+ 1

2ηt
‖x − xt‖2

Ht

}
• Define AdaX depending on the strategy for ∇̃f (xt ): AdaSFW, AdaSVRF, etc.
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Convergence analysis

Theorem
Let f1, . . . , fm : Rn → R be L-smooth convex functions with G = maxC ‖∇fi‖2.
Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2, ηt ← λ−t /L, and γt ← 2/(t + 2)
satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ = λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• AdaSVRF and AdaCSFW also converge at a rate O(1/t) with bt ∼ t and

bt ∼ 1 respectively
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/t1/2−ν) with bt ∼ t and γt ← 1/(t + 1)1/2+ν , 0 < ν < 1/2
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Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW, as well as AdaGrad and AMSGrad on a wide range of experiments

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5
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Convex objectives

• Support vector classification on a
synthetic dataset

• Linear regression on the
YearPredictionMSD dataset

• Logistic regression on the RCV1 dataset

29



Nonconvex objectives

• Neural network with one hidden
layer on the IMDB dataset

• Convolutional network on the
CIFAR-10 dataset

• Each layer is constrained into an `∞-ball

30



The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x
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Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

31



The approximate Carathéodory problem
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The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32



The approximate Carathéodory problem
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• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?
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Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[ and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[ ∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[ ∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence
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The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.
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The Hybrid Conditional Gradient-Smoothing algorithm

Theorem (Argyriou et al., 2014)
Let f : Rn → R be a convex G2-Lipschitz continuous function w.r.t. the
`2-norm. Then

f (xt)−min
C

f 6
4G2D2√

t + 1
.
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Cardinality bounds

p Assumption Cardinality bound

Via Frank-Wolfe Related work

[2,+∞[ – O
(

pD2
p

ε2

)
O
(

pD2
p

ε2

)
x∗ ∈ int(C) O

(
p
(

Dp

rp

)2

ln
(1
ε

))
O

(
p
(

Dp

rp

)2

ln
(1
ε

))
C strongly convex O

(√pDp + p/αp

ε

)
–

]1, 2[ – O
(

n(2−p)/pD2
2

ε2

)
O
(

Dp/(p−1)
p

p1/(p−1)εp/(p−1)

)
1 – O

(
nD2

2
ε2

)
–

+∞ – O
(

D2
2
ε2

)
O
(

ln(n)D2
∞

ε2

)
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Conclusion

Boosted Frank-Wolfe

gt
v0

xt

−∇f (xt )

Frank-Wolfe & adaptive gradients

common
common rare

descent direction

xt

Approximate Carathéodory

x∗
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Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt )

SFW 1
bt

bt∑
j=1

∇fij (xt )

SVRF ∇f (x̃t ) + 1
bt

bt∑
j=1

(∇fij (xt )−∇fij (x̃t ))

SPIDER-FW ∇f (x̃t ) + 1
bt

bt∑
j=1

(∇fij (xt )−∇fij (xt−1))

ORGFW 1
bt

bt∑
j=1

∇fij (xt ) + (1− ρt )

(
∇̃f (xt−1)− 1

bt

bt∑
j=1

∇fij (xt−1)

)

CSFW ∇̃f (xt−1) +
bt∑

j=1

( 1
m f ′ij (〈aij , xt〉)− [αt−1]ij

)
aij

and [αt ]ij ←
{

(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else
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(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else
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A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n .

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn
• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)
gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
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A lower bound when p ∈ [2, +∞[

• FCFW almost matches the lower bound

• There is no precise analysis of FCFW: the current analysis is transferred
from that of AFW (Lacoste-Julien & Jaggi, 2015) and holds only for
smooth strongly convex functions
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