
Frank-Wolfe Methods for
Optimization and Machine Learning

Cyrille W. Combettes

School of Industrial and Systems Engineering
Georgia Institute of Technology

April 16, 2021

Outline

1 Introduction

2 The Frank-Wolfe algorithm

3 Boosting Frank-Wolfe by chasing gradients

4 Adaptive Frank-Wolfe for large-scale optimization

5 The approximate Carathéodory problem

2

Introduction

We consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

3

Introduction

We consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

3

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap
• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

4

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

xt

xt − γt∇f (xt)

xt+1

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap
• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

4

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive

• This is an issue with the method of projections, not necessarily with the
geometry of C: linear minimizations over C can still be relatively cheap

• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

4

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

4

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap
• We compare

arg min
x∈C

〈x , y〉 and arg min
x∈C

‖x − y‖

on several sets commonly used in optimization

4

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

5

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

5

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

Example: the `1-ball

5

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

5

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

5

Complexity of linear minimization and projection

Set C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) O(nρ2‖y − x∗‖2

2/ε
2)

Nuclear norm-ball O(ν ln(m + n)√σ1/
√
ε) O(mn min{m, n})

Flow polytope O(m + n) Õ(m3n + n2)
Birkhoff polytope O(n3) O(n2d2

z /ε
2)

Permutahedron O(n ln(n)) O(n ln(n) + n)

• Can we avoid projections?

5

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C

• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections

• FW = pick a vertex (using gradient information) and move in that
direction

• Applications: traffic assignment, computer vision, optimal transport,
adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction

• Applications: traffic assignment, computer vision, optimal transport,
adversarial learning, etc.

6

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈v ,∇f (xt)〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Applications: traffic assignment, computer vision, optimal transport,

adversarial learning, etc.

6

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

7

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

7

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

7

Step-size strategies

• The first strategy considered historically (Frank & Wolfe 1956; Levitin &
Polyak, 1966; Demyanov & Rubinov, 1970) is

γt ← min
{
〈xt − vt ,∇f (xt)〉

L‖xt − vt‖2 , 1
}

and is obtained from the smoothness upper bound:

γt = arg min
γ∈[0,1]

f (xt) + γ〈vt − xt ,∇f (xt)〉+ L
2γ

2‖vt − xt‖2
2

• Later on, Dunn & Harshbarger (1978) proposed open-loop strategies in the
form γt ∼ 1/t. The one popularized by Jaggi (2013) is

γt ←
2

t + 2

7

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• The iterates can follow a naive and slow trajectory

8

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• The iterates can follow a naive and slow trajectory

8

Convergence analysis

Theorem (Frank & Wolfe, 1956; Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth convex function. Then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• The iterates can follow a naive and slow trajectory

8

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)

• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

9

The zigzagging phenomenon

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
{(

0
1

)
,

(
−1
0

)
,

(
1
0

)}

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

9

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

10

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

10

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

10

Faster variants of Frank-Wolfe
• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Guélat & Marcotte, 1986;

Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to also move
away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

10

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?

• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

11

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

11

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)

• Build this direction by using C to maintain the projection-free property

11

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea:
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

11

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉
λ0u0 = 〈v0−xt ,−∇f (xt)〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉
λ0u0 = 〈v0−xt ,−∇f (xt)〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt

and satisfies [xt , xt + gt] ⊂ C so we can update
xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

Intuition
• How can we build a direction better aligned with −∇f (xt) and that allows

to update xt+1 without projection?
• v0 ∈ arg maxv∈C〈v ,−∇f (xt)〉

λ0u0 = 〈v0−xt ,−∇f (xt)〉
‖v0−xt‖2 (v0 − xt)

r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈v , r1〉
λ1u1 = 〈v1−xt ,r1〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈v , r2〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊂ C so we can update

xt+1 = xt + γtgt for all γt ∈ [0, 1]

12

A generic boosting procedure
Algorithm Boosting procedure Boost(d, z,K , δ)
Input: d 6= 0, z ∈ C, K ∈ N\{0}, δ ∈]0, 1[

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← d− dk . k-th residual
4: vk ← arg maxv∈C 〈v , rk〉 . FW oracle
5: uk ← vk − z
6: λk ← 〈uk , rk〉/‖uk‖2

2
7: d ′k ← dk + λkuk
8: if cos(d ′k , d)− cos(dk , d) > δ then
9: dk+1 ← d ′k

10: Λ← Λ + λk
11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• cos(d̂ , d) = 〈d̂,d〉
‖d̂‖2‖d‖2

if d̂ 6= 0, else −1 if d̂ = 0

• The stopping criterion is an alignment improvement condition (typically
δ ← 10−3 and K ← +∞)

13

A generic boosting procedure
Algorithm Boosting procedure Boost(d, z,K , δ)
Input: d 6= 0, z ∈ C, K ∈ N\{0}, δ ∈]0, 1[

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← d− dk . k-th residual
4: vk ← arg maxv∈C 〈v , rk〉 . FW oracle
5: uk ← vk − z
6: λk ← 〈uk , rk〉/‖uk‖2

2
7: d ′k ← dk + λkuk
8: if cos(d ′k , d)− cos(dk , d) > δ then
9: dk+1 ← d ′k

10: Λ← Λ + λk
11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• cos(d̂ , d) = 〈d̂,d〉
‖d̂‖2‖d‖2

if d̂ 6= 0, else −1 if d̂ = 0
• The stopping criterion is an alignment improvement condition (typically
δ ← 10−3 and K ← +∞)

13

A generic boosting procedure
Algorithm Boosting procedure Boost(d, z,K , δ)
Input: d 6= 0, z ∈ C, K ∈ N\{0}, δ ∈]0, 1[

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← d− dk . k-th residual
4: vk ← arg maxv∈C 〈v , rk〉 . FW oracle
5: uk ← vk − z
6: λk ← 〈uk , rk〉/‖uk‖2

2
7: d ′k ← dk + λkuk
8: if cos(d ′k , d)− cos(dk , d) > δ then
9: dk+1 ← d ′k

10: Λ← Λ + λk
11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• cos(d̂ , d) = 〈d̂,d〉
‖d̂‖2‖d‖2

if d̂ 6= 0, else −1 if d̂ = 0
• The stopping criterion is an alignment improvement condition (typically
δ ← 10−3 and K ← +∞)

13

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

14

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

14

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

14

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

14

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?

• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

14

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?

• How does it compare to the state of the art?

14

The Boosted Frank-Wolfe algorithm

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[

1: for t = 0 to T − 1 do
2: gt ← Boost(−∇f (xt), xt ,K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state of the art?

14

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

15

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

15

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

15

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

15

Convergence analysis

• Let Nt be the number of iterations up to t for which at least 2 rounds of
alignment were performed (FW = always 1 round) with a step-size < 1

Theorem
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be an
L-smooth, convex, and µ-gradient dominated function, and let
x0 ← arg minv∈C〈v ,∇f (y)〉 for some y ∈ C and γt ← min

{
〈gt ,−∇f (xt)〉

L‖gt‖2
2

, 1
}

.
Suppose that Nt > ωt where ω > 0. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

15

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free strategies and
label them with an “L”

16

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free strategies and
label them with an “L”

16

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free strategies and
label them with an “L”

16

Computational experiments

• Sparse signal recovery • Traffic assignment

• Sparse logistic regression on the
Gisette dataset

• Collaborative filtering on the
MovieLens 100k dataset

17

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG

BoostDICG

at ← away vertex

at ← away vertex

vt ← arg min
v∈C

〈v ,∇f (xt)〉

gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at)

xt+1 ← xt + γtgt

18

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG

BoostDICG

at ← away vertex

at ← away vertex

vt ← arg min
v∈C

〈v ,∇f (xt)〉

gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at)

xt+1 ← xt + γtgt

18

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG

BoostDICG

at ← away vertex

at ← away vertex

vt ← arg min
v∈C

〈v ,∇f (xt)〉

gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at)

xt+1 ← xt + γtgt

18

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈v ,∇f (xt)〉 gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at) xt+1 ← xt + γtgt
18

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈v ,∇f (xt)〉 gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at) xt+1 ← xt + γtgt
18

Boosting DICG
• DICG is known to perform particularly well on the video co-localization

experiment (YouTube-Objects dataset)
• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈v ,∇f (xt)〉 gt ← Boost(−∇f (xt), at ,K , δ)

xt+1 ← xt + γt (vt − at) xt+1 ← xt + γtgt
18

Large-scale optimization

Consider

min
{

f (x) := 1
m

m∑
i=1

fi (x)
}

s.t. x ∈ C
where
• C ⊂ Rn is a compact convex set
• f1, . . . , fm : Rn → R are smooth (non)convex functions
• m ≫ 1 is very large

Computing f (x) or ∇f (x) is too expensive
• Cannot use line search
• More efficient to use an estimator ∇̃f (x) to get approximate (but cheap)

gradient information

19

Large-scale optimization

Consider

min
{

f (x) := 1
m

m∑
i=1

fi (x)
}

s.t. x ∈ C
where
• C ⊂ Rn is a compact convex set
• f1, . . . , fm : Rn → R are smooth (non)convex functions
• m ≫ 1 is very large

Computing f (x) or ∇f (x) is too expensive
• Cannot use line search
• More efficient to use an estimator ∇̃f (x) to get approximate (but cheap)

gradient information

19

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈v , ∇̃f (xt)〉

4: xt+1 ← xt + γt(vt − xt)

• Use a stochastic estimator ∇̃f (xt)
• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the

gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

bt∑
j=1
∇fij (xt) where i1, . . . , ibt

i.i.d.∼ U(J1,mK)

• SFW converges with rate O(1/t) when bt ∼ t2 (Hazan & Luo, 2016)
• New variants require only bt ∼ t or bt ∼ 1

20

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈v , ∇̃f (xt)〉

4: xt+1 ← xt + γt(vt − xt)

• Use a stochastic estimator ∇̃f (xt)

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

bt∑
j=1
∇fij (xt) where i1, . . . , ibt

i.i.d.∼ U(J1,mK)

• SFW converges with rate O(1/t) when bt ∼ t2 (Hazan & Luo, 2016)
• New variants require only bt ∼ t or bt ∼ 1

20

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈v , ∇̃f (xt)〉

4: xt+1 ← xt + γt(vt − xt)

• Use a stochastic estimator ∇̃f (xt)
• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the

gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

bt∑
j=1
∇fij (xt) where i1, . . . , ibt

i.i.d.∼ U(J1,mK)

• SFW converges with rate O(1/t) when bt ∼ t2 (Hazan & Luo, 2016)
• New variants require only bt ∼ t or bt ∼ 1

20

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈v , ∇̃f (xt)〉

4: xt+1 ← xt + γt(vt − xt)

• Use a stochastic estimator ∇̃f (xt)
• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the

gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

bt∑
j=1
∇fij (xt) where i1, . . . , ibt

i.i.d.∼ U(J1,mK)

• SFW converges with rate O(1/t) when bt ∼ t2 (Hazan & Luo, 2016)

• New variants require only bt ∼ t or bt ∼ 1

20

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈v , ∇̃f (xt)〉

4: xt+1 ← xt + γt(vt − xt)

• Use a stochastic estimator ∇̃f (xt)
• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the

gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

bt∑
j=1
∇fij (xt) where i1, . . . , ibt

i.i.d.∼ U(J1,mK)

• SFW converges with rate O(1/t) when bt ∼ t2 (Hazan & Luo, 2016)
• New variants require only bt ∼ t or bt ∼ 1

20

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

21

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

21

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

21

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

21

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

21

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

21

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈x , ∇̃f (xt)〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

21

The Adaptive Gradient algorithm
We can rewrite

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem
• Larger step-sizes are given to infrequent (but potentially very informative)

features whenever they appear so that they do not go unnoticed

22

The Adaptive Gradient algorithm
We can rewrite

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem
• Larger step-sizes are given to infrequent (but potentially very informative)

features whenever they appear so that they do not go unnoticed

22

The Adaptive Gradient algorithm
We can rewrite

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem
• Larger step-sizes are given to infrequent (but potentially very informative)

features whenever they appear so that they do not go unnoticed

22

The Adaptive Gradient algorithm
We can rewrite

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero

• The step-size automatically adjusts to the geometry of the problem
• Larger step-sizes are given to infrequent (but potentially very informative)

features whenever they appear so that they do not go unnoticed

22

The Adaptive Gradient algorithm
We can rewrite

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem

• Larger step-sizes are given to infrequent (but potentially very informative)
features whenever they appear so that they do not go unnoticed

22

The Adaptive Gradient algorithm
We can rewrite

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem
• Larger step-sizes are given to infrequent (but potentially very informative)

features whenever they appear so that they do not go unnoticed

22

The Adaptive Gradient algorithm

common feature

common feature
rare feature

descent direction

xt

Adaptive step-sizes reduce the magnitude of the common features and increase those
of the rare features:

common feature

common feature
rare feature

common feature

common feature
rare feature

common feature
common feature rare feature

descent direction

xt

23

The Adaptive Gradient algorithm

common feature

common feature
rare feature

descent direction

xt

Adaptive step-sizes reduce the magnitude of the common features and increase those
of the rare features:

common feature

common feature
rare feature

common feature

common feature
rare feature

common feature
common feature rare feature

descent direction

xt

23

The Adaptive Gradient algorithm

common feature

common feature
rare feature

descent direction

xt

Adaptive step-sizes reduce the magnitude of the common features and increase those
of the rare features:

common feature

common feature
rare feature

common feature

common feature
rare feature

common feature
common feature rare feature

descent direction

xt

23

The Adaptive Gradient algorithm

common feature

common feature
rare feature

descent direction

xt

Adaptive step-sizes reduce the magnitude of the common features and increase those
of the rare features:

common feature

common feature
rare feature

common feature

common feature
rare feature

common feature
common feature rare feature

descent direction

xt

23

The Adaptive Gradient algorithm

common feature

common feature
rare feature

descent direction

xt

Adaptive step-sizes reduce the magnitude of the common features and increase those
of the rare features:

common feature

common feature
rare feature

common feature

common feature
rare feature

common feature
common feature rare feature

descent direction

xt

23

The Adaptive Gradient algorithm

common feature

common feature
rare feature

descent direction

xt

Adaptive step-sizes reduce the magnitude of the common features and increase those
of the rare features:

common feature

common feature
rare feature

common feature

common feature
rare feature

common feature
common feature rare feature

descent direction

xt

23

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?

• Let Gt = H−1
t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈v ,Gt〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad

24

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?
• Let Gt = H−1

t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈v ,Gt〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad

24

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?
• Let Gt = H−1

t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈v ,Gt〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?

• We would likely lose the precious properties of the descent directions of
AdaGrad

24

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?
• Let Gt = H−1

t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈v ,Gt〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad

24

Frank-Wolfe with adaptive gradients via sliding

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈x , ∇̃f (xt)〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall (AdaGrad is usually
used for unconstrained optimization)

Idea:
• Solve the subproblem using FW (sliding technique of Lan & Zhou (2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• That is, we claim that leveraging just a small amount of information from

the adaptive metric Ht is enough

25

Frank-Wolfe with adaptive gradients via sliding

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈x , ∇̃f (xt)〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall (AdaGrad is usually
used for unconstrained optimization)

Idea:
• Solve the subproblem using FW (sliding technique of Lan & Zhou (2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• That is, we claim that leveraging just a small amount of information from

the adaptive metric Ht is enough

25

Frank-Wolfe with adaptive gradients via sliding

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈x , ∇̃f (xt)〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall (AdaGrad is usually
used for unconstrained optimization)

Idea:
• Solve the subproblem using FW (sliding technique of Lan & Zhou (2016))

• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• That is, we claim that leveraging just a small amount of information from

the adaptive metric Ht is enough

25

Frank-Wolfe with adaptive gradients via sliding

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈x , ∇̃f (xt)〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall (AdaGrad is usually
used for unconstrained optimization)

Idea:
• Solve the subproblem using FW (sliding technique of Lan & Zhou (2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)

• That is, we claim that leveraging just a small amount of information from
the adaptive metric Ht is enough

25

Frank-Wolfe with adaptive gradients via sliding

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈x , ∇̃f (xt)〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall (AdaGrad is usually
used for unconstrained optimization)

Idea:
• Solve the subproblem using FW (sliding technique of Lan & Zhou (2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• That is, we claim that leveraging just a small amount of information from

the adaptive metric Ht is enough

25

The method
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt (y (t)

k)← ∇̃f (xt) + 1
ηt

Ht (y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt (y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt (y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4–9 apply K iterations of FW to
minx∈C

{
Qt (x) := f (xt) + 〈x − xt , ∇̃f (xt)〉+ 1

2ηt
‖x − xt‖2

Ht

}
• Define AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

26

The method
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt (y (t)

k)← ∇̃f (xt) + 1
ηt

Ht (y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt (y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt (y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4–9 apply K iterations of FW to
minx∈C

{
Qt (x) := f (xt) + 〈x − xt , ∇̃f (xt)〉+ 1

2ηt
‖x − xt‖2

Ht

}
• Define AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

26

The method
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt (y (t)

k)← ∇̃f (xt) + 1
ηt

Ht (y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt (y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt (y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4–9 apply K iterations of FW to
minx∈C

{
Qt (x) := f (xt) + 〈x − xt , ∇̃f (xt)〉+ 1

2ηt
‖x − xt‖2

Ht

}
• Define AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

26

The method
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt (y (t)

k)← ∇̃f (xt) + 1
ηt

Ht (y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt (y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt (y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4–9 apply K iterations of FW to
minx∈C

{
Qt (x) := f (xt) + 〈x − xt , ∇̃f (xt)〉+ 1

2ηt
‖x − xt‖2

Ht

}

• Define AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

26

The method
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt (y (t)

k)← ∇̃f (xt) + 1
ηt

Ht (y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt (y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt (y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4–9 apply K iterations of FW to
minx∈C

{
Qt (x) := f (xt) + 〈x − xt , ∇̃f (xt)〉+ 1

2ηt
‖x − xt‖2

Ht

}

• Define AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

26

The method
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1]

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt (y (t)

k)← ∇̃f (xt) + 1
ηt

Ht (y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt (y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt (y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4–9 apply K iterations of FW to
minx∈C

{
Qt (x) := f (xt) + 〈x − xt , ∇̃f (xt)〉+ 1

2ηt
‖x − xt‖2

Ht

}
• Define AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

26

Convergence analysis

Theorem
Let f1, . . . , fm : Rn → R be L-smooth convex functions with G = maxC ‖∇fi‖2.
Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2, ηt ← λ−t /L, and γt ← 2/(t + 2)
satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ = λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• AdaSVRF and AdaCSFW also converge at a rate O(1/t) with bt ∼ t and

bt ∼ 1 respectively
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/t1/2−ν) with bt ∼ t and γt ← 1/(t + 1)1/2+ν , 0 < ν < 1/2

27

Convergence analysis

Theorem
Let f1, . . . , fm : Rn → R be L-smooth convex functions with G = maxC ‖∇fi‖2.
Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2, ηt ← λ−t /L, and γt ← 2/(t + 2)
satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ = λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)

• AdaSVRF and AdaCSFW also converge at a rate O(1/t) with bt ∼ t and
bt ∼ 1 respectively

• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point
at a rate O(1/t1/2−ν) with bt ∼ t and γt ← 1/(t + 1)1/2+ν , 0 < ν < 1/2

27

Convergence analysis

Theorem
Let f1, . . . , fm : Rn → R be L-smooth convex functions with G = maxC ‖∇fi‖2.
Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2, ηt ← λ−t /L, and γt ← 2/(t + 2)
satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ = λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• AdaSVRF and AdaCSFW also converge at a rate O(1/t) with bt ∼ t and

bt ∼ 1 respectively

• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point
at a rate O(1/t1/2−ν) with bt ∼ t and γt ← 1/(t + 1)1/2+ν , 0 < ν < 1/2

27

Convergence analysis

Theorem
Let f1, . . . , fm : Rn → R be L-smooth convex functions with G = maxC ‖∇fi‖2.
Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2, ηt ← λ−t /L, and γt ← 2/(t + 2)
satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ = λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• AdaSVRF and AdaCSFW also converge at a rate O(1/t) with bt ∼ t and

bt ∼ 1 respectively
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/t1/2−ν) with bt ∼ t and γt ← 1/(t + 1)1/2+ν , 0 < ν < 1/2

27

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW, as well as AdaGrad and AMSGrad on a wide range of experiments

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

28

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW, as well as AdaGrad and AMSGrad on a wide range of experiments

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

28

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW, as well as AdaGrad and AMSGrad on a wide range of experiments

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

28

Convex objectives

• Support vector classification on a
synthetic dataset

• Linear regression on the
YearPredictionMSD dataset

• Logistic regression on the RCV1 dataset

29

Nonconvex objectives

• Neural network with one hidden
layer on the IMDB dataset

• Convolutional network on the
CIFAR-10 dataset

• Each layer is constrained into an `∞-ball

30

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗

x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

31

The approximate Carathéodory problem

Theorem (Carathéodory, 1907)
Let C ⊂ Rn be a compact convex set and x∗ ∈ C. Then x∗ can be represented
as a convex combination of at most n + 1 vertices of C.

• In R2, every point in C is a convex
combination of at most 3 vertices

• Can we reduce n + 1 when we can afford
an ε-approximation?

• Define the cardinality of x ∈ C as the
number of vertices in a given convex
decomposition of x

v1

v6

v3

v2

v5

v4

x∗x

31

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n

• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)

• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)

• Deterministic proof by Mirrokni et al. (2017) using mirror descent
(Nemirovsky & Yudin, 1983) on the dual problem

• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem

• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

The approximate Carathéodory problem

Problem
Find x ∈ C with low cardinality satisfying ‖x − x∗‖p 6 ε.

• Applications in game theory, combinatorial optimization, etc.

Theorem (Barman, 2015)
Let p ∈ [2,+∞[. Then there exists x ∈ C with cardinality O(pD2

p/ε
2) satisfying

‖x − x∗‖p 6 ε, where Dp is the diameter of C in the `p-norm.

• This result is independent of the ambient dimension n
• The bound is tight (Mirrokni et al., 2017)
• Probabilistic proofs by Pisier (1981); Barman (2015)
• Deterministic proof by Mirrokni et al. (2017) using mirror descent

(Nemirovsky & Yudin, 1983) on the dual problem
• Can we solve minx∈C ‖x − x∗‖p by sequentially picking up vertices?

32

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

33

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

33

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

33

Solving via Frank-Wolfe

Lemma
Let p ∈ [2,+∞[and f (x) = 1

2‖x − x∗‖2
p. Then f is convex, (p − 1)-smooth,

and 1-gradient dominated w.r.t. the `p-norm.

• If p ∈ [2,+∞[, run FW on minx∈C
1
2‖x − x∗‖2

p and count the number of
iterations to reach ε2/2-convergence

Lemma
Let p ∈ [1, 2[∪ {+∞} and f (x) = ‖x − x∗‖p. Then f is convex and Lipschitz
continuous w.r.t. the `2-norm, with constant n1/p−1/2 if p ∈ [1, 2[, else 1 if
p = +∞.

• If p ∈ [1, 2[∪ {+∞}, run HCGS on minx∈C ‖x − x∗‖p and count the
number of iterations to reach ε-convergence

33

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

34

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2

and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

34

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

34

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

34

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

34

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

34

The Hybrid Conditional Gradient-Smoothing algorithm
Smoothen the problem (Argyriou et al., 2014) by taking the Moreau envelope
(Moreau, 1965):

fβ(x) = min
y∈Rn

f (y) + 1
2β ‖x − y‖2

2 and ∇fβ(x) = 1
β

(x − proxβf (x))

Algorithm Hybrid Conditional Gradient-Smoothing (HCGS)

Input: x0 ∈ C, G2,D2
1: for t = 0 to T − 1 do
2: βt ← 2(D2/G2)/

√
t + 2

3: vt ← arg minv∈C 〈v ,∇fβt (xt)〉
4: γt ← 2/(t + 2)
5: xt+1 ← xt + γt(vt − xt)

Lemma (Argyriou et al., 2014)
For all β > β′ > 0, fβ 6 f 6 fβ + βG2

2/2 and fβ 6 fβ′ 6 fβ + (β − β′)G2
2/2.

34

The Hybrid Conditional Gradient-Smoothing algorithm

Theorem (Argyriou et al., 2014)
Let f : Rn → R be a convex G2-Lipschitz continuous function w.r.t. the
`2-norm. Then

f (xt)−min
C

f 6
4G2D2√

t + 1
.

35

Cardinality bounds

p Assumption Cardinality bound

Via Frank-Wolfe Related work

[2,+∞[– O
(

pD2
p

ε2

)
O
(

pD2
p

ε2

)
x∗ ∈ int(C) O

(
p
(

Dp

rp

)2

ln
(1
ε

))
O

(
p
(

Dp

rp

)2

ln
(1
ε

))
C strongly convex O

(√pDp + p/αp

ε

)
–

]1, 2[– O
(

n(2−p)/pD2
2

ε2

)
O
(

Dp/(p−1)
p

p1/(p−1)εp/(p−1)

)
1 – O

(
nD2

2
ε2

)
–

+∞ – O
(

D2
2
ε2

)
O
(

ln(n)D2
∞

ε2

)

36

Conclusion

Boosted Frank-Wolfe

gt
v0

xt

−∇f (xt)

Frank-Wolfe & adaptive gradients

common
common rare

descent direction

xt

Approximate Carathéodory

x∗

37

References (1/4)

A. Argyriou, M. Signoretto, and J. A. K. Suykens. Hybrid conditional gradient-smoothing
algorithms with applications to sparse and low rank regularization. Chapman & Hall/CRC,
2014

S. Barman. Approximating Nash equilibria and dense bipartite subgraphs via an approximate
version of Carathéodory’s theorem. STOC, 2015

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning
of conditional gradients. ICML, 2019

M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe
algorithm. SIAM J. Control, 1968

C. W. Combettes and S. Pokutta. Blended matching pursuit. NeurIPS, 2019
C. W. Combettes and S. Pokutta. Revisiting the approximate Carathéodory problem via the

Frank-Wolfe algorithm. Minor revision at Math. Program., 2021
C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020
C. W. Combettes and S. Pokutta. Complexity of linear minimization and projection on some

sets. Minor revision at Oper. Res. Lett., 2021
C. W. Combettes, C. Spiegel, and S. Pokutta. Projection-free adaptive gradients for large-

scale optimization. Submitted, 2021
L. Condat. Fast projection onto the simplex and the `1 ball. Math. Program., 2016

38

References (2/4)

V. F. Demyanov and A. M. Rubinov. Approximate Methods in Optimization Problems. Elsevier,
1970

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 2011

J. C. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop step size rules.
J. Math. Anal. Appl., 1978

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956
D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent con-

ditional gradient algorithm for structured polytopes. NIPS, 2016
E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. ICML,

2016
J. Guélat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Math. Program., 1986
Y. Haugazeau. Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Convexes.

Thèse de doctorat, Univ. Paris, 1968
M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015
S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization

variants. NIPS, 2015

39

References (3/4)
G. Lan. The complexity of large-scale convex programming under a linear optimization oracle.

arXiv, 2013
G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM J. Optim.,

2016
E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math.

Phys., 1966
F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained

optimization with convergence guarantees. NIPS, 2017
H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization.

COLT, 2010
V. Mirrokni, R. Paes Leme, A. Vladu, and S. C.-W. Wong. Tight bounds for approximate

Carathéodory and beyond. ICML, 2017
J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France, 1965
G. Négiar, G. Dresdner, A. Y.-T. Tsai, L. El Ghaoui, F. Locatello, R. M. Freund, and F. Pe-

dregosa. Stochastic Frank-Wolfe for constrained finite-sum minimization. ICML, 2020
A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization.

Wiley, 1983
G. Pisier. Remarques sur un résultat non publié de B. Maurey. Ec. polytech., 1981
S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. ICLR, 2018

40

References (4/4)

Z. Shen, C. Fang, P. Zhao, J. Huang, and H. Qian. Complexities in projection-free stochastic
non-convex minimization. AISTATS, 2019

P. Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Programming.
North-Holland, 1970

J. Xie, Z. Shen, C. Zhang, H. Qian, and B. Wang. Efficient projection-free online methods with
stochastic recursive gradient. AAAI, 2020

A. Yurtsever, S. Sra, and V. Cevher. Conditional gradient methods via stochastic path-integrated
differential estimator. ICML, 2019

41

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

bt∑
j=1

∇fij (xt)

SVRF ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (xt−1))

ORGFW 1
bt

bt∑
j=1

∇fij (xt) + (1− ρt)

(
∇̃f (xt−1)− 1

bt

bt∑
j=1

∇fij (xt−1)

)

CSFW ∇̃f (xt−1) +
bt∑

j=1

(1
m f ′ij (〈aij , xt〉)− [αt−1]ij

)
aij

and [αt]ij ←
{

(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else

42

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

bt∑
j=1

∇fij (xt)

SVRF ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (xt−1))

ORGFW 1
bt

bt∑
j=1

∇fij (xt) + (1− ρt)

(
∇̃f (xt−1)− 1

bt

bt∑
j=1

∇fij (xt−1)

)

CSFW ∇̃f (xt−1) +
bt∑

j=1

(1
m f ′ij (〈aij , xt〉)− [αt−1]ij

)
aij

and [αt]ij ←
{

(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else

42

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

bt∑
j=1

∇fij (xt)

SVRF ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (xt−1))

ORGFW 1
bt

bt∑
j=1

∇fij (xt) + (1− ρt)

(
∇̃f (xt−1)− 1

bt

bt∑
j=1

∇fij (xt−1)

)

CSFW ∇̃f (xt−1) +
bt∑

j=1

(1
m f ′ij (〈aij , xt〉)− [αt−1]ij

)
aij

and [αt]ij ←
{

(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else

42

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

bt∑
j=1

∇fij (xt)

SVRF ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (xt−1))

ORGFW 1
bt

bt∑
j=1

∇fij (xt) + (1− ρt)

(
∇̃f (xt−1)− 1

bt

bt∑
j=1

∇fij (xt−1)

)

CSFW ∇̃f (xt−1) +
bt∑

j=1

(1
m f ′ij (〈aij , xt〉)− [αt−1]ij

)
aij

and [αt]ij ←
{

(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else

42

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

bt∑
j=1

∇fij (xt)

SVRF ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (xt−1))

ORGFW 1
bt

bt∑
j=1

∇fij (xt) + (1− ρt)

(
∇̃f (xt−1)− 1

bt

bt∑
j=1

∇fij (xt−1)

)

CSFW ∇̃f (xt−1) +
bt∑

j=1

(1
m f ′ij (〈aij , xt〉)− [αt−1]ij

)
aij

and [αt]ij ←
{

(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else

42

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

bt∑
j=1

∇fij (xt)

SVRF ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

bt∑
j=1

(∇fij (xt)−∇fij (xt−1))

ORGFW 1
bt

bt∑
j=1

∇fij (xt) + (1− ρt)

(
∇̃f (xt−1)− 1

bt

bt∑
j=1

∇fij (xt−1)

)

CSFW ∇̃f (xt−1) +
bt∑

j=1

(1
m f ′ij (〈aij , xt〉)− [αt−1]ij

)
aij

and [αt]ij ←
{

(1/m)f ′ij (〈aij , xt〉) if ij ∈ {i1, . . . , ibt}
[αt−1]ij else

42

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n .

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn
• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)
gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



43

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n .

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn

• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)
gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



43

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n .

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn
• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)

gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



43

A lower bound when p ∈ [2, +∞[

Theorem (Mirrokni et al., 2017)
Let p ∈ [2,+∞[, Hn ∈ Rn×n be the Hadamard matrix of dimension n,
C = conv(Hn/n1/p) be the convex hull of the `p-normalized columns of Hn, and
x∗ = e1/n1/p ∈ C. Then for all x ∈ C,

‖x − x∗‖p 6 ε⇒ card(x) > 1
ε2 + 1/n .

• Hn ∈ Rn×n is a Hadamard matrix if Hn ∈ {±1}n×n and H>n Hn = nIn
• Sylvester’s construction:

H2n =
(

Hn Hn
Hn −Hn

)
gives

H1 =
(
1
)
, H2 =

(
1 1
1 −1

)
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


43

A lower bound when p ∈ [2, +∞[

• FCFW almost matches the lower bound

• There is no precise analysis of FCFW: the current analysis is transferred
from that of AFW (Lacoste-Julien & Jaggi, 2015) and holds only for
smooth strongly convex functions

44

A lower bound when p ∈ [2, +∞[

• FCFW almost matches the lower bound
• There is no precise analysis of FCFW: the current analysis is transferred

from that of AFW (Lacoste-Julien & Jaggi, 2015) and holds only for
smooth strongly convex functions

44

	Introduction
	The Frank-Wolfe algorithm
	Boosting Frank-Wolfe by chasing gradients
	Adaptive Frank-Wolfe for large-scale optimization
	The approximate Carathéodory problem

